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Abstract

Long transient dynamics in ecological models are characterized by extended periods
in one state or regime before an eventual, and often abrupt, transition. One mechanism
leading to long transient dynamics is the presence of ghost attractors, states where
system dynamics slow down and the system lingers before eventually transitioning
to the true attractor. This transition results solely from system dynamics rather than
external factors. This paper investigates the dynamics of a classical herbivore-grazer
model with the potential for ghost attractors or alternative stable states. We propose an
intuitive threshold for first passage time analysis applicable to both bistable and ghost
attractor regimes. By formulating the first passage time problem as a backward Kol-
mogorov equation, we examine how the mean first passage time changes as parameters
are varied from the ghost attractor regime to the bistable one, through a saddle-node
bifurcation. Our results reveal that the mean and variance of first passage times vary
smoothly across the bifurcation threshold, eliminating the deterministic distinction
between ghost attractors and bistable regimes. This work suggests that first passage
time analysis can be an informative way to classify the length of a long transient.
A better understanding of the duration of long transients may contribute to greater
ecological understanding and more effective environmental management.

Keywords First passage time - Ghost attractor - Long transients - Regime shift -
Saddle-node bifurcation

1 Introduction

Recent work has highlighted the existence and importance of long transient dynamics
in ecological models (Hastings 2001; Hastings et al. 2018; Boettiger and Batt 2020;
Morozov et al. 2020). Long transient dynamics refer to model trajectories that linger
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near a state or attractor for a long time (e.g., many generations) before transitioning—
often rapidly— to a different attractor (Hastings et al. 2018). Such sustained but
ultimately transient dynamics can arise through several mechanisms, and can occur in
both deterministic and stochastic models (Hastings et al. 2021; Morozov et al. 2020).
Recently, the mathematical theory of long transients, including formal definitions and
exploration of conditions necessary for their existence, has started to take shape (Liu
and Magpantay 2022; Liu et al. 2023; Morozov et al. 2020).

Long transient dynamics are interesting not only mathematically, but also for their
ecological implications. If a population, community, or ecosystem is experiencing long
transient dynamics, this can make management or conservation of the system chal-
lenging. A population at equilibrium may be managed very differently than one that
is in a long transient period (Boettiger 2021), and mistaking long transient dynamics
for a steady state, or vice versa, may result in lost resources and ecological disasters
(Francis et al. 2021).

One mechanism by which long transient dynamics arise is through a so-called
ghost attractor (Strogatz 1994; Hastings et al. 2018). This is a state near which
system dynamics are very slow, causing the system to spend considerable time near
the ghost attractor before eventually rapidly transitioning to the true attractor. Ghost
attractors have been studied in theoretical models (Vortkamp et al. 2020) as well as
empirical studies (Jager et al. 2008; Van Geest et al. 2007). The dynamics caused by
a ghost attractor may appear qualitatively similar to those caused by tipping points or
regime shifts (Boettiger and Batt 2020; Carpenter et al. 2011; Dakos et al. 2019).
However, the rapid transition between the long transient dynamics and the asymptotic
dynamics is driven solely by dynamics inherent to the system rather than a change in
parameter values or an external forcing of the state variable.

One way in which a ghost attractor occurs is if the system has a saddle-node
bifurcation and parameter values are just next to the bifurcation point, adjacent to where
the two steady states collide and disappear. Dynamics near this collision state— the
ghost of the attractor that disappeared in the bifurcation— will be very slow, causing
the system to linger in its vicinity. In noisy systems, it can be difficult to infer whether
a system has a ghost attractor or a true attractor (Reimer et al. 2021; Abbott and
Nolting 2017). In a system with two stable states, stochasticity can cause a population
to jump from one basin of attraction to another, so that both a bistable regime and a
regime with a ghost attractor generate similar bimodal distributions of states over time
(Abbott and Dakos 2021; Abbott and Nolting 2017).

One property of interest in this scenario is the timing of the jump from one state
to another, either from a ghost attractor to the true attractor, or between two alternate
stable states. Using simulation, Reimer et al. (2021) found that adding noise to a model
with a ghost attractor alters the mean trajectory (Figure 2 in Reimer et al. (2021)), but
that work did not explore what effects the timing of the jump and how it varies as the
parameters are shifted across the saddle-node bifurcation.

For stochastic models with alternative stable states, several approaches exist for
understanding stochasticity-induced jumps between basins of attractions, including
Kramers escape probabilities (Kramers 1940; Zhang et al. 2019) and first passage
time (FPT) analysis (Abbott and Dakos 2021; Chou and D’Orsogna 2014; Grebenkov
et al. 2020). The FPT of a dynamical system is the earliest time 75 > 0 at which a
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state variable x reaches a chosen threshold 8. For deterministic models, the FPT is a
deterministic quantity. For stochastic models, however, the FPT is a random variable
that can be described by a probability density function. We can then examine properties
of this probability density function such as the mean FPT (MFPT). Depending on the
nature of the stochasticity, the MFPT can be estimated using Monte Carlo simulations
of the system (Abbott and Dakos 2021; Drury 2007), approximated using various
approximation methods (Drury 2007; Kurella et al. 2015; Nolting and Abbott 2016),
or found by means of the backward Kolmogorov equation (Floris 2019; Gardiner
etal. 1985; McKenzie et al. 2009).

In a bistable model, the threshold used for a MFPT analysis is, intuitively, often the
value of the unstable equilibrium that separates them. In a model with a ghost attractor,
however, this natural choice of threshold no longer exists, and yet the concept of how
long the system spends near the ghost attractor seems like it should lend itself to a
MFPT anlaysis, provided a suitable threshold can be found for when the long transient
period is finished.

In this paper, we work with the classical herbivore-grazer model of May (1977),
which is capable of either a ghost attractor or alternative stable states, depending on
parameter regime. We propose an intuitive threshold for a FPT analysis that can be
used in both a bistable and ghost attractor regimes. We formulate the FPT problem as
a backward Kolmogorov equation, which we solve to examine how the MFPT of the
system changes as parameters are varied through a saddle-node bifurcation. We find
that the MFPT and the variance of FPTs vary smoothly as we cross the bifurcation
threshold, eliminating the distinction between the ghost attractor and bistable regimes
seen in a purely deterministic model.

2 Herbivore-Grazer Model

We first introduce the deterministic harvest-grazer model of May (1977). This model
has been used to explore early-warning signs of critical transitions (Scheffer et al.
2009), how noise can induce transitions between high and low vegetation states
(alternate stable states) (Zhang et al. 2019), and for its potential to produce long
transient dynamics (Reimer et al. 2021).
This model describes a plant population of size x with logistic population growth
and subject to grazing,

dx (1 x) ax? 0
— =rx(l-=) — —.
" K) " xi+ ha

Grazing is represented using a Holling Type III functional response, with half-
saturation constant s, maximum grazing rate a, and shape parameter g. Two
saddle-node bifurcations are possible for this model under certain parameterizations
(May 1977). If we vary a, the number of non-zero steady states jumps from one, to
three, and then back to one as a passes two bifurcation thresholds (a; and a; in Fig. 1).
For parameter values between these two bifurcation thresholds, this model has two
alternative stable states; a smaller herbivore-dominated state and a larger vegetation-
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Fig. 1 Bifurcation structure of the deterministic herbivore-grazer model (1) as the maximum grazing rate,

a, is varied. Two saddle-node bifurcations occur at a; =~ 0.0232 and ap ~ 0.0252. Other parameters are
r=005K=2h=038andg =5

dominated state (Ludwig et al. 1978). A ghost attractor occurs for values of a adjacent
to the bifurcation points (i.e., slightly less than a; and slightly greater than a;). For
these values of a, (1) approaches, but does not achieve, a value of 0, for values of
x near the ghost attractor, causing the population size to change very slowly in this
region and appear nearly stable (Fig.2). The closer a is to the bifurcation value, the
longer the population may spend near the ghost attractor. However, because it is not a
true attractor, the population eventually leaves the ghost attractor, followed by a rapid
approach to the true steady state.

To study the effects of environmental stochasticity on these dynamics, we consider
the related It stochastic differential equation,

X aX4
dX =|rX[1-— —— |dt + o XdW

K) Xi+ha
= w(X)dt + ¢(X)dW

2

where W is stationary Gaussian white noise, scaled by the product of the population
size X and a noise constant o. This is a Wiener process with drift vector 1 (X) and
diffusion vector ¢ (X).

Following (Reimer et al. 2021), we fix parameters as follows: r = 0.05, K =
2,h = 0.38, and ¢ = 5, and vary a around the bifurcation value a; ~ 0.023. We
consider solutions with the initial values x (0) = 0.3 and X (0) = 0.3. Note that while
we focus on a; here, a similar analysis could be completed for a;.
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Fig. 2 Illustration of how the deterministic model (1) and stochastic model (2) behavior varies with a, the
maximum grazing rate. As we move from the left column to the right, the system transitions from having a
single nonzero steady state (@ = 0.022), to having a ghost attractor (@ = 0.023), and then across a saddle-
node bifurcation resulting in a bistable system (a¢ = 0.0245). The top row shows the rate of population
change (right hand side of [1)], with black and yellow circles marking unstable and stable steady states.
The middle row shows the corresponding deterministic trajectories. The bottom row shows three solutions
to the stochastic model (2), with their FPTs highlighted as pink circles. The FPT threshold is shown in
each plot as a dashed black line. In the final plot, one of the trajectories did not exceed the threshold in the
shown time period, so its FPT is not marked. Observe the clear differences in behavior in the deterministic
trajectories, compared with the blurrier distinction between the different stochastic plots. Parameters are
r=0.05K=2,h=0.38,9g =5,¢ = 0.02, and xyg = 0.3. The thresholds for « = 0.022, 0.023, and
0.024 are B = 0.9807, 0.9798, and 0.9787 respectively (Color figure online)

3 First Passage Time Analysis
3.1 Defining the Threshold

We need to define a threshold g for our FPT analysis that intuitively corresponds to
the population transition from the lower state of interest (either the true attractor or
the ghost attractor, depending on parameterization regime) to the higher, vegetation-
dominated steady state. To achieve this, we chose 8 as the value of x that maximizes
dx/dt over the interval between either the ghost attractor or the unstable steady state
and the larger vegetation-dominated stable steady state (dashed lines in Fig.2). This
corresponds to the state at which the population is transitioning most rapidly towards
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the vegetation-dominated stable steady state in the deterministic model. These values
were calculated numerically as the largest root of the derivative of (1) with respect to
x, and were found to vary nonlinearly with a (Appendix Fig.5).

3.2 Formulation as a Backwards Kolmogorov Equation

We can now solve the FPT problem using the backward Kolmogorov equation (Allen

2010; Floris 2019). We first define a reliability function, r(¢; xo), as the probability
that a given time ¢ is less than the FPT 4 of a stochastic process, for a given initial
condition xq (Floris 2019),

r(t; xo0) = P(t < tg]xo0). 3)

The complement of this function, 1 — r(¢; x¢), is the probability that the first passage
has occurred by time 7. Its time derivative, which we will denote as g (¢; xq), provides
us with a probability density function for the FPT,

0 d
q(t; x0) = 3 [1—r(t; x0)] = —51’0; xp). 4

We now work obtain an expression for the reliability function, since we can then use
it to derive the probability distribution of FPTs.

Let p(x, t; xo) denote the transition probability density function of (2), which pro-
vides the relative likelihood of the population transitioning from the initial condition
X (0) = xo to state x at time ¢. Since (2) is time-homogeneous, p(x, t; xg) is a solution
of the backward Kolmogorov equation

PG _ ) W10 Lo, P x0). )
t dxg on

For xg € («, B), where @ > 0 and g is our threshold value, we can obtain the reliability
function r(¢; xo) by integrating the transitional probability density function,

B
r(t;XO)=/ p(x,t; xo)dx. (6)
0

By integrating both sides of (5) from O to S with respect to x, we see that r(¢; x¢) also
satisfies the backward Kolmogorov equation,

or(t; x0) ar(t; xo) 327 (t; x0)

Y = u(xp)—— oo + ¢( )3—)68 @)
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Fig. 3 a Reliability function, r(¢; x(), obtained as the numerical solution to the backward Kolmogorov
Equation (7). The black dashed line indicates the solution for xyo = 0.3, which is plotted in (b). ¢ The
probability density function of FPTs, ¢(z; xg), obtained as the negative time-derivative of the curve in
(b). The histogram shows the frequency of FPTs in 10,000 stochastic solutions, confirming the probability
density curve. The solution shown corresponds to the ghost attractor regime, where a = 0.023. Other
parameters are r = 0.05, K =2,h =0.38, ¢ =5, and ¢ = 0.02

To obtain the reliability function, we solve (7) with the following initial and boundary
conditions:

initial condition : r(xg,0) =1

8
boundary conditions: r(8,7) =0, r(«,t)=1. ®

We numerically solve (7)—(8) to obtain r(¢; xo) (Fig.3a, b). We then take its time
derivative to find the probability density function of FPTs ¢(¢; xo), following (4).
Comparing this solution to the empirical probability density function obtained through
10,000 Monte Carlo solutions of (2), supports the calculations (Fig. 3c).

4 Moments of the Distribution of First Passage Times

Once we have obtained the probability density function of FPTs, ¢ (¢; xo), we can
explore how it changes as we vary a through the bifurcation value a; by looking
at its moments. The MFPT of the stochastic model varies smoothly as a increases
through the ghost attractor regime and through the bifurcation point a; (Fig.4a). For
comparison, we also calculated the FPT of the deterministic model (1), which displays
avertical asympote ata = ajy, since the solution will never leave the basin of attraction
that contains x¢ (Fig.4). The difference between the FPT of the deterministic model
and the MFPT of the stochastic model is greatest in the region of the ghost attractor,
very near the bifurcation value of a.

We also looked at how the variance of the FPT probability density function varies
with a. For values of a > ay, the variance increases dramatically (Fig.4b, c).

5 Sensitivity to Noise Intensity
Until this point, we have held all parameters except a to be constant. Here we briefly

also explore the effect of varying o, the noise intensity parameter in (2), on our findings.
As we increase and decrease o (we looked at values in the range of [0.015, 0.025],
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Fig. 4 a Mean FPTs of the stochastic herbivore-grazer model (2) as the maximum grazing rate, a, is
varied through the bifurcation value a; (dashed vertical line). The FPT of the corresponding deterministic
model (1) is shown for comparison. b Variance of FPTs. ¢ Probability density functions of FPTs for three
representative value of a, corresponding to regimes with a single stable steady state, a ghost attractor, and
a bi-stable regime, illustrating the shift in the mean and increase in variance as a increases. Parameters are
r=005K=2h=038,¢g=5,¢=0.02,and xg = 0.3

higher and lower than the value of o = 0.02 used previously), we find that the
MFPT does not vary monotonically with o, but rather its behavior depends on the
value of a (Appendix Fig.6). If a is small (vegetation dominated regime), then the
MFPT increases with o. For the bistable regime with a larger a, the MFPT instead
decreases with o. Finally, for intermediate values (near the ghost attractor), the MFPT
is nonmonotonic in o. The variance of FPTs also depends on o and a; fora < aj, the
variance of FPTs increases with o, while for a > ay, it decreases (Appendix Fig.7.)
However, the qualitative patterns of dependence of the MFPT on a observed in Fig. 4
still hold for all values of o considered.

6 Discussion

In this paper, we used the classic herbivore-grazer model by May (1977) to explore
how the FPT of a stochastic trajectory changes as model parameters are varied through
ghost attractor into a bistable regime. We introduced an intuitive threshold for FPT
analysis, applicable to both the bistable and ghost attractor scenarios. We were able
to obtain the full distribution of FPTs by formulating the problem as a backward
Kolmogorov equation. Solving the this equation allowed us to investigate how the
MFPT and variance of FPTS evolve as parameters are varied through a saddle-node
bifurcation. Our findings indicate that both the MFPT and the variance of FPTs exhibit
smooth changes as we traverse the bifurcation threshold. This effectively erases the
distinction between the ghost attractor and bistable scenarios observed in a purely
deterministic model. For all parametrizations considered, the MFPT of the stochastic
model was less than the FPT of the deterministic model. This difference between
the FPT of the deterministic versus stochastic model was found to be greatest as we
approached the bifurcation point, where the system displays a ghost attractor.

These findings align with those of Abbott and Nolting (2017), who found that
stochastic time series in a unistable regime can masquerade as those in a bistable
regime. Under certain conditions, stochastic time series generated by Abbott and
Nolting (2017) from both regimes had similar mean and equilibrium population sizes,
temporal variance in population sizes, and had similar results from various statistical
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tests for bimodality. We here suggest that the distribution of FPTs provides another
metric with which to evaluate the distinction between regimes.

Previous work by Reimer et al. (2021) examined the same grazer-herbivore model
in an effort to determine which statistical methods may allow for inference regarding
whether a time series resulted from the ghost attractor or bistable regimes. By averaging
over multiple simulated trajectories, they found that the average trajectory diverges
from the ghost attractor earlier than the corresponding deterministic trajectory, i.e.,
FPT(E[X]) < FPT(x). While related, this is different than what we consider in
this paper: E[F PT (x]. For example, when a = 0.023, FPT (E[X]) = 842 and
E[FPT (x)] = 831. This discrepancy is due to Jensen’s inequality and the nonlinearity
of the MFPT. Since typically only one stochastic trajectory may be realized in a
system, rather than a simultaneous ensemble of trajectories, the full distribution of
possible FPTs, as considered in this paper, likely provides more relevant information
for understanding possible outcomes.

Recently proposed more formal definitions of what constitutes long transient behav-
ior have been based on the idea that the length of the transient can be made arbitrarily
long if some controlling parameter p is chosen appropriately (Liu et al. 2023; Moro-
zov et al. 2020). Morozov et al. (2020) outline two possible ways by which this
can happen, either (i) there exists a finite critical parameter value p. such that the
length of the transient approaches infinity as p — p¢, or (ii) the length of the transient
approaches infinity as p — oo. For the deterministic herbivore-grazer model explored
here, we find ourselves in case (i), where the FPT— o0 as a — a; . However, the
addition of multiplicative noise to create the stochastic model instead results in case
(ii), where the MFPT— oo as a — oo (Fig.4a). Whether this is a universal or even
common result of adding multiplicative noise to a deterministic model with a long
transient remains an open question.

The approach taken here, of finding the full distribution of FPTs using the backward
Kolmogorov approach, can be applied to a variety of models with long transient
dynamics, provided they can be formulated as a stochastic differential equation. This
approach allows for characterisation of the expected duration of a long transient as
well as the variance of this duration. However, depending on the mechanism behind
the long transient (e.g., crawl-by behavior, slow-fast dynamics, attractor hopping, etc.
[Morozov et al. 2020)], the challenge will lie in defining a suitable threshold for FPT
analysis.

Code Availability Computations were conducted using R (version 4.3.1; R Core Team (2023)) and MAT-

LAB (version 9.9.0.1570001, R2020b; The MathWorks Inc. (2020)). All code and full documentation are
archived at doi:10.5281/zenodo.10472441.

@ Springer



34  Page 100f 12 G.R. Poulsen et al.

Appendix
A Supplementary figures
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Fig. 6 Exploration of how the MFPT changes with the noise constant o. a How the MFPT varies as o is
varied depends on the value of a. Curves correspond to 10 evenly spaced values of a between 0.0210 (bottom,
darkest curve) and 0.0240 (top, lightest curve). The y axis uses a log10 scaling for ease of visualization.
b-c¢ A closer look at three of the curves in (a), illustrating that the MFPT may increase, decrease, or be
non-monotonic as o is varied, depending on the value of a. Values of @ in (b—c¢) are a = 0.021, 0.022, and
0.024, respectively. Other parameters are » = 0.05, K =2,h =0.38,and ¢ =5
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Iogm(Variance of FPTs)
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Fig.7 Exploration of how the variance of FPTs changes as the noise constant ¢ is varied around the value
used elsewhere in the paper (o = 0.02). As in Fig. 6, the y axis uses a log10 scaling for ease of visualization
and curves correspond to 10 evenly spaced values of a between 0.0210 (bottom, darkest curve) and 0.0240
(top, lightest curve). Other parameters are r = 0.05, K =2,h =0.38,andg =5
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